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Branch points in the complex plane and geometric phases
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Laser-induced degenerate statefDS) are equivalent to double poles of tBenatrix that are branch points
in the complex planéBPCB. These branch points cause geometric phase changes by encircling them adia-
batically around a closed circuit by varying certain parameters. They cause also the well-known phase changes
appearing by encircling a diabolic poifiP) being a singularity associated with level repulsion. In both cases,

the wave functions are exchangeel,— ti&bj# , at the critical value of the parameter where the states avoid
crossing. Such a critical point is passed twice by encircling a DP but only once by surrounding a BPCP. As a
consequence, the phase changes are different in both cases. A second surrounding restores the wave functions
including their phases in both cas@géhen the BPCP is well isolated from others and the time of encircling is
shorter than the lifetime of the two state$he different interference pictures appearing in surrounding LIDS
adiabatically in opposite directions on a closed circuit represent a completion of the work by Berry.
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I. STRUCTURES IN THE CONTINUUM AND POLES OF space of the function space whose eigenstates can decay into
THE S MATRIX the complementary subspace. An essential point is the bior-

thogonality of the eigenfunctions ¢4 due to which the

The interest in the topological structure of the Hilbert right and left eigenfunctiongﬁyg and d" respectively, are

space and geometric phases has advanced since the pionegfferent from one another. For symmetridaf®, it is [10]
ing paper by Bernf1]. Best known are the diabolic points

(DP), e.g.,[2]. They are singularities associated with level (DL DR)=(DK|Dri) = Srp (1)
repulsions(called avoided level crossings or anticrossings
that occur by variation of a certain parameter. Tr_ T Tt % ; ;

When a DP is encircled adiabatically in the parameter\t’)v-here(I)R_(PR and dp=07 . Equation(1) provides the

. iorthogonality relations

space, a geometric phase appddis Some years ago, the
appearance of such a geometric phase has been studied ex-
perimentally on two-dimensional microwave resonators by
surrounding a DP where the parameter space is the space of ~ o~
shapes of the resonat@8]. While the results for a well- Ar=(Dg|dg)=>1
separated DP showed the expected Berry phase, the results _ o _ _
for not-separated DP are much more complicated and could (Pg/Pr 2r) =i IM(PRPr2r)) = —(Pr/2r| R
be understood only recent[y,5]. Geometric phases in dis-
sipative systems may be complg—8]. In [8], the geomet- BR'#*R=|(dDg|Pri 2r)|=0. ()
ric phase of the wave function of the hydrogen atom for a
closed circuit in a three-parameter space is calculated in thBue to these relations, some nonlinear terms appear in the

framework of the Flogquet theory where the three physicalschrglinger equation that vanish withg— 1, B§’—>O [10].
parameters are the individual intensities of the two compo- |n [10], the relation between the effective Hamiltonian
nents of the bichromatic light beam and the relative phase ofjef and theS matrix is derived that holds for isolated as well
these components. as for overlapping resonances. Especially, it holds also for
Besides the DP, other singularities in different fields ofywo resonance states whose eigenvalues are the same, i.e., at
physics are discussed. Most interesting are the singularitieg double pole of theS matrix. It is shown further that the

of the mapping from parameter space to the Hilbert spacge|ation(1) holds also at a double pole of tifamatrix. Here,
These singularities are in the continuum into which dissipathe two wave functions are linearly dependent,

tive systems are embedded. An example are the laser-

induced degenerate statgdDS), see the reviey9], which POP_, +jpoP 3)
- . . R —I¥R %R’

appear as structures in the continugmesonances in the

cross section It is clear that any structure in the continuum

is related to the poles of th® matrix that provide the ener-

gies and widths of the resonance states, see,[&@].,They i R/ i ]

are the eigenvalues of an effective Hamilton operatsf  filled becauseAg—c and Bg —o in approaching the

that appears in the function space of discrete states when it fiouble pole[10]. Since theS matrix contains the product of

embedded in a continuum of decay channels. The effectivéhe wave functionsby according to the orthonormality con-

Hamiltonian is non-Hermitian since it is defined in a sub-dition (1) [10], a smooth behavior around the double pole of

(| Dr)=Re((Dg| D)) =(Dp | Drr)

as shown analytically10] as well as numerically for LIDS
[11]. Nevertheless, the orthonormality relatidn can be ful-
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the S matrix is expected in all experimentally relevant val- ——®g (Berry phasg in surrounding a DP under adiabatic
ues. The double poles of th8 matrix are second-order conditions, those in surrounding a BPCP change differently,
branch points in the complex plaiBPCP [10,12. They ®g— +idg:/.g. These differences should be visible in the
appear as LIDS in laser-induced continuum structures in atinterference picture obtained after surrounding a LIDS.
oms[11,13. They cause, among others, some stabilization of

a_toms(called ‘adiabatic stabilization] or resonance trap- 1. TWO-BY-TWO HAMILTONIAN MATRIX
ping [11,13), i.e., a decrease of the ionization rate with in- . _ _ . _
creasing intensity of the laser. Let us illustrate the avoided level crossing and its relation

In some other studies of singularities, the properties of0 @ BPCP by means of the complex two-by-two Hamiltonian
exceptional points are investigated] that are, according to  matrix
their definition, related to avoided level crossings. They are
shown to be also BPCP10,12. Surrounding exceptional ~yi(a) w
points in the parameter space, phase changes are expected to e (a) 0 27t
appear[15] and found in a microwave cavity experiment 0 e,(a) - 1
[16], indeed. The phase changes observed in encircling a DP ® = vs(a)
and an exceptional point are caused by sheetopological 2
structure of the Hilbert spadd.7].

The phenomenon of avoided level crossing is traced as
function of a certain parameter in calculations on microwav
billiards [18] as well as on atomgl1,13. While two inter-

4

The unperturbed energies and widthsy, (k=1,2) of the
fivo states depend on the parametdo be tuned in such a
Cmanner that the two states may cross in enefgyd/or
width) whenw=0. The two states interact only via the non-

acting discrete levels avoid always crossing, resonance Stat‘a?agonal matrix elements that may be complex, in general

can Ccross, under certain _condltlons, N the complex plane[.lo]. They are assumed, in the following, to be independent
The transition from an avoided level crossing to a real cross:

ing in the complex planéwhere theS matrix has a double of the parametea. The eigenvalues ok are

pole) takes place smoothly, at least in laser-induced con- i a+e 1
tinuum structures in atoms where the double pole of $he & i=E;— §Fi,i: 5 ii V(e — €)°+4w?  (5)
matrix appears as LID§L1,13.

In other studies, the influence of the BPCP is traced up tQ, .., i, j=1, 2 ande=e,— (i/2)y (k=1,2). According to

the discrete states of quantum systemg1®,20], the BPCP

(called hidden crossingsre shown to influence the spectra

of atoms. The position of the BPCP is clearly determined b

the (Hermitian Hamiltonian of the system and its relation to

the (Hermitian Hamiltonian of the residual syste(fispec-

troscopic factorsy [12]. The relation between a BPCP and F(a,0)=(€,— €)2+ 40> 6)

the avoided crossings of discrete states is traced as a function

of a certain parameter {i0,12. As a result, a BPCP causes s different from zero for alla (with the exception of a few

an avoided crossing of discrete states in the same manner ggjues the number of which is of measure 2e@nly when

it does it for resonance states. Further, a nontrivial influencg (g, »)=0 ata=a®® (and w=w®), the states cross, i.e.,

of nonisolated BPCP on the miXing of the discrete State%lzgz_ In SUCh a case, tlf'@matrix has a double po'e' It can

could be stated. further be seen from Ed5) that the crossing point is a BPCP
All these studies show that avoided crossings of discretgf second order due to the square root appearing in the ex-

and resonance states are caused by singularities of the magession for the eigenvalues. The critical vaafé® of the

ping from the parameter space to the Hilbert space. Althoughsrametera is determined by the valueswj? and (e;
the number of BPCP is of measure zero, their influence on_ ¢.)2 pyt not by the signs of these values. According to Eq.

physically relevant values and the level dynamics is large. Ig5), the position of the BPCP is in the complex plane at the
can be expressed by nonlinear terms in the Stihger point X=(1/2){ e,(a) + ,(a"©)}.

equation that are related to the biorthogonal teAmrsand As can be seen from E6), F=Fr+iF, is generally a
BE' defined by Eq(2) [10]. Experimentally, it can be studied complex number,

by means of the LIDS.

Eq. (5), two interacting discrete statéwith y,=0) always
avoid crossing since» and (e;—€,) are real in this case.
yEquation(5) shows also the generic property that resonance
states with nonvanishing widthg, avoid crossing since

In the following, the differences occurring after a full sur- Fr(a,0)=(e1— €)= i (71— y2)*+4(wi— o), (7)
rounding of a(well-isolated DP and a(well-isolated BPCP
in the parameter space under adiabatic conditions will be Fi(a,w)=(e;—€)(y1— ¥2) +8wgw,, (8

illustrated under the assumption that the encircling time is

shorter than the lifetimes of both resonance states. The pha¥é1ereo = wr+iw| (andwg, o, are real valugsAt a double
changes received by encircling the two points are differentpole of theS matrix, both parts=g andF, are zero at the
generally, but prove thsametopological structure of the critical valuea&ro of the parametea. When only the real or
Hilbert space. The two experimental data complete one arthe imaginary part of{F is zero at the critical valua¥,
other therefore in a valuable manner. While the phases of thihen the two levels do not cross in the complex plane. In

two wave functions change in the same mann®i  such a case, they cross freely in width but not in energy or
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TABLE |. Level crossing and critical coupling. 1 T T . T T
. . 0.8f .
) JF Energy Width Coupling
0.6} 2 1 .
Real Real Avoided crossing Free crossing Overcritical
Real Imag Free crossing No crossing Subcritical 047 i
Imag Real No crossing Free crossing Subcritical 02} i
Imag Imag Free crossing Avoided crossing Overcritical
X {BPCP) 1
. . . . _0.2 ]
vice versa. Some combinations with= wg and o= w, are
shown in Table I. The difference betwearoided crossing —0.4r T
andno crossingwill be illustrated by means of two special 06l 3 - 4 §
cases withF;=0 where the critical valua® (for a certain
fixed value w=w®) is determined by the crossing of the 8 |
unp_erturbed energies or WIdthS Vi . _ -1 5 5 25 3 35 4
(i) w;=0 (the coupling is realp= wg), y; independent of a

the parametea. Thene;=e, and
) FIG. 2. One possible way of encircling the BPCP lyingFat
F(a,0)=—2(y1— 72) %+ 4wk (9) =0. For realw, F>0 is the overcritical region with an avoided
level crossing in energy aa=a® while F<O0 is the subcritical
ata®. According to the value dfz, we have to differentiate region with free crossing in energy. The BPCP is denoteXbly

between three cases anda are in arbitrary units.
Fr(a,0)>0— Fg=real, (100 studies are shown iflL0], Figs. 1 and 2. The two cas€s
>0 andFg<0 have been studied experimentally in a micro-
Fr(a,0)=0—Fg=0, (11)  wave cavity[21]. Here, the first case is calleavercritical
coupling, the second orwitical coupling, and the third one
Fr(a,w)<0—\Fgr=imaginary. (12)  subcritical coupling (Table ).

(iil) wg=0 (the coupling is imaginaryw=iw,), He;, in-
The first case is the well-known level repulsion in energydependent of the parametarTheny;= vy, and
(avoided crossing in energyvith an exchange of the two
states that is accompanied by a frgie) crossing of the ng)(a,w)=(e1—e2)2—4w§ (13
widths ata®. The second case corresponds to the double
pole of theS matrix. In the third case, the two levels cross ata®, According to the value o, we have again the three
freely in energy, the difference of the widths does never becaseq10)—(12) but describing now a different physical situ-
come zero(no crossing in widthand the two states are not ation. The case with an exchange of the stateaais Eq.
eXChanged at the critical vala&", Examples from numerical (12) where the two levels repe| in W|d(|av0|ded Crossing in
width) and cross freely in energy. The second case corre-
sponds again to the double pole of tBenatrix. In the first
case corresponding to E¢L0), no exchange of the states
takes place, the difference of their energies never becomes
zero (no crossing in energyand their widths cross freely.
One can call the first cassubcritical coupling, the second
casecritical coupling, and the third casevercritical cou-
pling (Table ).
T The two casegi) and (ii) are physically different from
one another. While the overcritical situation is characterized
by Eq. (10) in (i), it is determined by the conditioflL2) in
(ii). In the first case, the two levels repel in enefgievel
repulsion”) but align their widths(“spreading of the transi-
tion strengths} while in the latter case, they attract in energy
(“cluster formation”) but repel in width(“formation of dif-
. . . . . ferent time scales by means of resonance trapping”
1.5 2 25 3 35 4 In microwave cavitiesp may be complex due to the cou-
a pling of the resonance states via the chanfi2@. Under
FIG. 1. One possible way of encircling the DP lying Ft-0. certain conditionsvg is the dominant part while, is domi-
For realw, F>0 is the overcritical region with an avoided level Nant under other conditio48]. The interplay between level
crossing in energy at=a®". The BPCP lying aF =0 is denoted by  repulsion caused byg and cluster formation caused lay
X. F anda are in arbitrary units. is studied in laser-induced continuum structures in the adia-

1 T T T T T

051 _— 1

or X (BPCP) 1
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batic limit[11,13 In this casew is given by the Rabi fre- with subcritical coupling aa®. For illustration see Fig. 2
quency. The cluster formation is accompanied by resonancghere w~ wg, case(i), is assumed as in Fig. 1. The first
trapping that may lead, under certain conditions, to a desurrounding causes the following changes: for the way from
crease of the ionization rate with increasing intensity of the to 2 with passing® at overcritical coupling,
laser beanadiabatic stabilization or resonance trapping

The two examplesi) and (ii) illustrate further that at the
critical valuea® the states are always exchanged when the
coupling is overcritical. In the case of subcritical coupling,
no exchange occurs. The exchange is related, in any case, to
a BPCP that appears as a double pole ofSmeatrix when ) o o
the condition of the critical coupling is fulfillef0,12. The  for the way from 2 to 3 with transition from the overcritical
two wave functions can be normalized according to @, O the subcritical coupling, no exchange occurs siaicavill
in the whole function space including the BPCP althoughot be passed; for the way from 3 to 4 with passafgat

they are linearly dependent at the BPCP according tq#g. fSchrZi%a' T(OUplingv. EO exchgngt: occur:saért éor.thelwayh
The point is that @;)? is, ata®, the differenceof two infi- rom 4 back 1o 1 with transition from the subcritical to the

nitelv large numbers that be 0 or 1. Al phvsicall | overcritical coupling, no exchange occurs sircewill not
y1arg s that may be © or L. All physically Tel- o passed. Thus, the wave functions are exchanged with
evant values contain the wave functions in a combinatio

X ) " rbhase changes af/2 and 37/2, respectively.
according to the orthonormality conditigd). They donot The second surrounding is as follows: for the way from 1

contain any singularities caused by tf;|? at the BPCP, to 2 with passinga® at overcritical coupling
i.e., by the relationg2) at a® (which are sums of two infi-
nitely large numbens

The DP is related to the avoided crossing of discrete lev-
els belonging to the cas@) with the condition(10). The
corresponding BPCP is beyond the function space consid-
ered. It is a hidden crossing. The DP is surrounded in the ) .
experiment 3], therefore, in the regime of overcritical cou- and for the way from 2 to 3 with transition from the over-

pling along the whole way of encircling and the BPCP itse”criticgl to the subcritical coupling, no exchange occurs since
is not encircled in this experiment. a® will not be passed; for the way from 3 to 4 with passing

a“ at subcritical coupling no exchange occursdf and for
the way from 4 back to 1 with transition from the subcritical
to the overcritical coupling no exchange occurs siaCewill

We will illustrate the surrounding of an isolated DP by not be passed. As a result, surrounding the BPCP adiabati-
means of adiabatically varying the parametén the Hamil-  cally twice restores the wave functios; including their
tonian (4) and using the relatiofB) ata“ and Table I. The phases, see Eq17). The BPCP is a second-order branch
encircling is illustrated in Fig. 1 where~ wg, case(i), is  point in correspondence with the eigenvalue equatin
assumed. It causes the following changes: for the way from 1 |n the experimenf16], the BPCP is encircled once and a
to 2 with passinga® at overcritical coupling, phase change of one of the wave functions has been ob-

served. This result coincides with E@.6). Surrounding the

®

@,

—id,

- ; 16
id, 19

_|&)2
id,

—+

, 17

Ill. ENCIRCLING OF ISOLATED DP AND BPCP

D, —id, BPCP in the opposite directigie., from 2 to 2 changes the
P - . | (14 phase of the other wave function according to the experiment
2 1

[16]. Such a result follows also theoretically. As in the case
discussed above, the only changes between the wave func-
tions take place by passing the critical vahfé at overcriti-

cal coupling. This gives for the encircling of the BPCP in the
opposite direction

and for the way back from 2 to 1 with passiad at over-
critical coupling,

~id, D,
el 1o 19 ) )
The encircling of the DP gives a phase changertyf both @, —id,

wave functions that is caused by the hidden BPCP. Encir-

cling it once more will restore the original wave functiohs  Thus, the theoretical resulid6) and (18) agree with the
including their phases. Thus, the BPCP is a second-ordesxperimental results presented|it6].
branch point that is in agreement with the eigenvalue equa- The relations(15) and (16) show that the phase changes
tion (5). The phase change occuring after the first surroundef the wave functions are different in encircling a DP and the
ing of the DP, Eq(15), corresponds to the well-known geo- corresponding BPCP in the parameter space only once. In
metric phase discussed by Befi,3]. both cases, a second surrounding restores the original wave
The way of encircling adiabatically the BPCP itself passedunctions including their phaseévhich holds exactly of
from a region with overcritical coupling @ to another one course only when the lifetimes of both states are long as
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compared to the time of encircling, i.e., in the adiabatic IV. SUMMARY
limit). This result is in correspondence to the fact that the
BPCP is a second-order branch point. Summarizing, it can be stated the following.

Experimental studies with surrounding a DP and a BPCP (1) Well-isolated BPCP are second-order branch points.

have been performed, up to now, only on microwave resonal Néy can be studied by means of LIDS. _
tors [3,16]. The results obtained are in agreement with the (2) The geometric phases appearing by surrounding a DP

theoretical expectations discussed abdsee [17]). The adiabatically in the parameter space are caused by a BPCP

LIDS provide another example for the appearance of geot_hat is a hidden crossing when the consideration is restricted
to the function space of discrete states.

metric phases when surrounded adiabatically in the param- (3) Encircling a DP adiabatically in the parameter space

eter space. The diﬁeref‘t phase cha_nges of _the MO .Wavgnly once, the phases of both wave functions are changed by
functions after surrounding the LIDS in opposite dlrectlonsw as discussed by Berfyl]

are expected to influence the interference picture of measur- (4) Encircling a BPCP adiabatically in the parameter
able values. In any case, it will be restored to the original ON&pace only once, the two wave functions are exchanged with
after a second surrounding only. the phase changes2 and 37/2, respectively.

It should be underlined here that all the results discussed The results discussed in this paper show that the Berry
above are obtained under the assumption that the system gase is the sign of a BPCP that is hidden when the function
adequately described by a two-state approximation, whicpace considered is restricted to the wave functions of dis-
includes that the considered BPCP is well separated frorgrete states. The BPCP are in the continuum, but their influ-
other BPCP in the neighborhood. This is surely true when thence continues analytically into the function space of dis-
BPCP lies near to the real axis and the level density is lowcrete states. Encircling adiabatically a LIDS in the parameter
As soon as twdgor more BPCP start to overlap in the com- space will provide measurable values that differ, due to in-
plex plane, i.e., when the corresponding widths exceed theerference effects, from the original ones. Only a second sur-
distance in energy between different BPCP, the changes @bunding will restore the original valugainder the assump-
the wave functions under the influence of the BPCP argion that the states did not yet decay during the time of
much more complicated, s¢é,5]. Especially, the nonlinear surrounding. An experimental study of this phenomenon
effects arising from the BPCP are difficult to hanfl®,12.  would represent an interesting proof of the topological struc-
The other assumption stressed above is the adiabaticity thaire of the Hilbert space, including the mapping from the
involves further that the lifetimes of both states are long agparameter space to the Hilbert space and the geometric
compared to the time of encircling the BPCP. phases.
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