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Branch points in the complex plane and geometric phases

I. Rotter
Max-Planck-Institut fu¨r Physik komplexer Systeme, D-01187 Dresden, Germany

~Received 21 August 2001; published 24 January 2002!

Laser-induced degenerate states~LIDS! are equivalent to double poles of theSmatrix that are branch points
in the complex plane~BPCP!. These branch points cause geometric phase changes by encircling them adia-
batically around a closed circuit by varying certain parameters. They cause also the well-known phase changes
appearing by encircling a diabolic point~DP! being a singularity associated with level repulsion. In both cases,

the wave functions are exchanged,F̃ i→6 i F̃ j Þ i , at the critical value of the parameter where the states avoid
crossing. Such a critical point is passed twice by encircling a DP but only once by surrounding a BPCP. As a
consequence, the phase changes are different in both cases. A second surrounding restores the wave functions
including their phases in both cases~when the BPCP is well isolated from others and the time of encircling is
shorter than the lifetime of the two states!. The different interference pictures appearing in surrounding LIDS
adiabatically in opposite directions on a closed circuit represent a completion of the work by Berry.

DOI: 10.1103/PhysRevE.65.026217 PACS number~s!: 05.45.2a, 03.65.Vf, 03.65.Ta, 31.90.1s
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I. STRUCTURES IN THE CONTINUUM AND POLES OF
THE S MATRIX

The interest in the topological structure of the Hilbe
space and geometric phases has advanced since the pio
ing paper by Berry@1#. Best known are the diabolic point
~DP!, e.g., @2#. They are singularities associated with lev
repulsions~called avoided level crossings or anticrossing!
that occur by variation of a certain parameter.

When a DP is encircled adiabatically in the parame
space, a geometric phase appears@1#. Some years ago, th
appearance of such a geometric phase has been studie
perimentally on two-dimensional microwave resonators
surrounding a DP where the parameter space is the spa
shapes of the resonator@3#. While the results for a well-
separated DP showed the expected Berry phase, the re
for not-separated DP are much more complicated and c
be understood only recently@4,5#. Geometric phases in dis
sipative systems may be complex@6–8#. In @8#, the geomet-
ric phase of the wave function of the hydrogen atom fo
closed circuit in a three-parameter space is calculated in
framework of the Floquet theory where the three physi
parameters are the individual intensities of the two com
nents of the bichromatic light beam and the relative phas
these components.

Besides the DP, other singularities in different fields
physics are discussed. Most interesting are the singular
of the mapping from parameter space to the Hilbert spa
These singularities are in the continuum into which dissi
tive systems are embedded. An example are the la
induced degenerate states~LIDS!, see the review@9#, which
appear as structures in the continuum~resonances in the
cross section!. It is clear that any structure in the continuu
is related to the poles of theS matrix that provide the ener
gies and widths of the resonance states, see, e.g.,@10#. They
are the eigenvalues of an effective Hamilton operatorHeff

that appears in the function space of discrete states when
embedded in a continuum of decay channels. The effec
Hamiltonian is non-Hermitian since it is defined in a su
1063-651X/2002/65~2!/026217~5!/$20.00 65 0262
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space of the function space whose eigenstates can decay
the complementary subspace. An essential point is the b
thogonality of the eigenfunctions ofHeff due to which the

right and left eigenfunctions,F̃R
rt and F̃R

lt , respectively, are
different from one another. For symmetricalHeff, it is @10#

^F̃R
lt uF̃R8

rt &5^F̃R* uF̃R8&5dRR8 ~1!

where F̃R
rt[F̃R and F̃R

lt 5F̃R* . Equation ~1! provides the
biorthogonality relations

^F̃RuF̃R&5Re~^F̃RuF̃R&!5^F̃R8uF̃R8&

AR[^F̃RuF̃R&>1

^F̃RuF̃R8ÞR&5 i Im~^F̃RuF̃R8ÞR&!52^F̃R8ÞRuf̃R&

BR
R8ÞR[u^F̃RuF̃R8ÞR&u>0. ~2!

Due to these relations, some nonlinear terms appear in

Schrödinger equation that vanish withAR→1, BR
R8→0 @10#.

In @10#, the relation between the effective Hamiltonia
Heff and theSmatrix is derived that holds for isolated as we
as for overlapping resonances. Especially, it holds also
two resonance states whose eigenvalues are the same, i
a double pole of theS matrix. It is shown further that the
relation~1! holds also at a double pole of theSmatrix. Here,
the two wave functions are linearly dependent,

F̃R
bp→6 i F̃R8ÞR

bp , ~3!

as shown analytically@10# as well as numerically for LIDS
@11#. Nevertheless, the orthonormality relation~1! can be ful-

filled becauseAR→` and BR
R8→` in approaching the

double pole@10#. Since theS matrix contains the product o

the wave functionsF̃R according to the orthonormality con
dition ~1! @10#, a smooth behavior around the double pole
©2002 The American Physical Society17-1
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I. ROTTER PHYSICAL REVIEW E 65 026217
the S matrix is expected in all experimentally relevant va
ues. The double poles of theS matrix are second-orde
branch points in the complex plane~BPCP! @10,12#. They
appear as LIDS in laser-induced continuum structures in
oms@11,13#. They cause, among others, some stabilization
atoms ~called adiabatic stabilization@9# or resonance trap
ping @11,13#!, i.e., a decrease of the ionization rate with i
creasing intensity of the laser.

In some other studies of singularities, the properties
exceptional points are investigated@14# that are, according to
their definition, related to avoided level crossings. They
shown to be also BPCP@10,12#. Surrounding exceptiona
points in the parameter space, phase changes are expec
appear@15# and found in a microwave cavity experime
@16#, indeed. The phase changes observed in encircling a
and an exceptional point are caused by thesametopological
structure of the Hilbert space@17#.

The phenomenon of avoided level crossing is traced a
function of a certain parameter in calculations on microwa
billiards @18# as well as on atoms@11,13#. While two inter-
acting discrete levels avoid always crossing, resonance s
can cross, under certain conditions, in the complex pla
The transition from an avoided level crossing to a real cro
ing in the complex plane~where theS matrix has a double
pole! takes place smoothly, at least in laser-induced c
tinuum structures in atoms where the double pole of thS
matrix appears as LIDS@11,13#.

In other studies, the influence of the BPCP is traced up
the discrete states of quantum systems. In@19,20#, the BPCP
~called hidden crossings! are shown to influence the spect
of atoms. The position of the BPCP is clearly determined
the ~Hermitian! Hamiltonian of the system and its relation
the ~Hermitian! Hamiltonian of the residual system~‘‘spec-
troscopic factors’’! @12#. The relation between a BPCP an
the avoided crossings of discrete states is traced as a fun
of a certain parameter in@10,12#. As a result, a BPCP cause
an avoided crossing of discrete states in the same mann
it does it for resonance states. Further, a nontrivial influe
of nonisolated BPCP on the mixing of the discrete sta
could be stated.

All these studies show that avoided crossings of disc
and resonance states are caused by singularities of the
ping from the parameter space to the Hilbert space. Altho
the number of BPCP is of measure zero, their influence
physically relevant values and the level dynamics is large
can be expressed by nonlinear terms in the Schro¨dinger
equation that are related to the biorthogonal termsAR and

BR
R8 defined by Eq.~2! @10#. Experimentally, it can be studie

by means of the LIDS.
In the following, the differences occurring after a full su

rounding of a~well-isolated! DP and a~well-isolated! BPCP
in the parameter space under adiabatic conditions will
illustrated under the assumption that the encircling time
shorter than the lifetimes of both resonance states. The p
changes received by encircling the two points are differe
generally, but prove thesame topological structure of the
Hilbert space. The two experimental data complete one
other therefore in a valuable manner. While the phases of
two wave functions change in the same manner,FR
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→2FR ~Berry phase!, in surrounding a DP under adiabat
conditions, those in surrounding a BPCP change differen
FR→6 iFR8ÞR . These differences should be visible in th
interference picture obtained after surrounding a LIDS.

II. TWO-BY-TWO HAMILTONIAN MATRIX

Let us illustrate the avoided level crossing and its relat
to a BPCP by means of the complex two-by-two Hamiltoni
matrix

H5S e1~a! 0

0 e2~a!
D 2S 1

2
g1~a! v

v
1

2
g2~a!

D . ~4!

The unperturbed energiesek and widthsgk (k51,2) of the
two states depend on the parametera to be tuned in such a
manner that the two states may cross in energy~and/or
width! whenv50. The two states interact only via the no
diagonal matrix elementsv that may be complex, in genera
@10#. They are assumed, in the following, to be independ
of the parametera. The eigenvalues ofH are

Ei , j[Ei , j2
i

2
G i , j5

e11e2

2
6

1

2
A~e12e2!214v2 ~5!

with i, j 51, 2 andek[ek2( i /2)gk (k51,2). According to
Eq. ~5!, two interacting discrete states~with gk50! always
avoid crossing sincev and (e12e2) are real in this case
Equation~5! shows also the generic property that resona
states with nonvanishing widthsgk avoid crossing since

F~a,v![~e12e2!214v2 ~6!

is different from zero for alla ~with the exception of a few
values the number of which is of measure zero!. Only when
F(a,v)50 at a5acr0 ~and v5vcr!, the states cross, i.e
E15E2 . In such a case, theSmatrix has a double pole. It ca
further be seen from Eq.~5! that the crossing point is a BPC
of second order due to the square root appearing in the
pression for the eigenvalues. The critical valueacr0 of the
parametera is determined by the values (v)2 and (e1
2e2)2 but not by the signs of these values. According to E
~5!, the position of the BPCP is in the complex plane at t
point X[(1/2)$e1(acr0)1e2(acr0)%.

As can be seen from Eq.~6!, F5FR1 iF l is generally a
complex number,

FR~a,v!5~e12e2!22 1
4 ~g12g2!214~vR

22v I
2!, ~7!

FI~a,v!5~e12e2!~g12g2!18vRv I , ~8!

wherev5vR1 iv l ~andvR , v I are real values!. At a double
pole of theS matrix, both partsFR and FI are zero at the
critical valueaR

cr0 of the parametera. When only the real or
the imaginary part ofAF is zero at the critical valueaR

cr ,
then the two levels do not cross in the complex plane.
such a case, they cross freely in width but not in energy
7-2
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BRANCH POINTS IN THE COMPLEX PLANE AND . . . PHYSICAL REVIEW E65 026217
vice versa. Some combinations withv5vR andv5v I are
shown in Table I. The difference betweenavoided crossing
and no crossingwill be illustrated by means of two specia
cases withFl50 where the critical valueacr ~for a certain
fixed value v5vcr! is determined by the crossing of th
unperturbed energiesei or widthsg i .

~i! v I50 ~the coupling is real,v5vR!, g i independent of
the parametera. Thene15e2 and

FR
~ i!~a,v!52 1

4 ~g12g2!214vR
2 ~9!

at acr. According to the value ofFR , we have to differentiate
between three cases

FR~a,v!.0→AFR5real, ~10!

FR~a,v!50→AFR50, ~11!

FR~a,v!,0→AFR5 imaginary. ~12!

The first case is the well-known level repulsion in ener
~avoided crossing in energy! with an exchange of the two
states that is accompanied by a free~true! crossing of the
widths at acr. The second case corresponds to the dou
pole of theS matrix. In the third case, the two levels cro
freely in energy, the difference of the widths does never
come zero~no crossing in width! and the two states are no
exchanged at the critical valueacr. Examples from numerica

FIG. 1. One possible way of encircling the DP lying atF.0.
For realv, F.0 is the overcritical region with an avoided lev
crossing in energy ata5acr. The BPCP lying atF50 is denoted by
X. F anda are in arbitrary units.

TABLE I. Level crossing and critical coupling.

v AF Energy Width Coupling

Real Real Avoided crossing Free crossing Overcriti
Real Imag Free crossing No crossing Subcritic
Imag Real No crossing Free crossing Subcritic
Imag Imag Free crossing Avoided crossing Overcritic
02621
le

-

studies are shown in@10#, Figs. 1 and 2. The two casesFR
.0 andFR,0 have been studied experimentally in a micr
wave cavity@21#. Here, the first case is calledovercritical
coupling, the second onecritical coupling, and the third one
subcritical coupling ~Table I!.

~ii ! vR50 ~the coupling is imaginary,v5 iv l!, Hei , in-
dependent of the parametera. Theng15g2 and

FR
~ ii !~a,v!5~e12e2!224v1

2 ~13!

at acr. According to the value ofFR , we have again the thre
cases~10!–~12! but describing now a different physical situ
ation. The case with an exchange of the states atacr is Eq.
~12! where the two levels repel in width~avoided crossing in
width! and cross freely in energy. The second case co
sponds again to the double pole of theS matrix. In the first
case corresponding to Eq.~10!, no exchange of the state
takes place, the difference of their energies never beco
zero ~no crossing in energy! and their widths cross freely
One can call the first casesubcritical coupling, the second
casecritical coupling, and the third caseovercritical cou-
pling ~Table I!.

The two cases~i! and ~ii ! are physically different from
one another. While the overcritical situation is characteriz
by Eq. ~10! in ~i!, it is determined by the condition~12! in
~ii !. In the first case, the two levels repel in energy~‘‘level
repulsion’’! but align their widths~‘‘spreading of the transi-
tion strengths’’! while in the latter case, they attract in energ
~‘‘cluster formation’’! but repel in width~‘‘formation of dif-
ferent time scales by means of resonance trapping’’!.

In microwave cavities,v may be complex due to the cou
pling of the resonance states via the channels@10#. Under
certain conditionsvR is the dominant part whilev l is domi-
nant under other conditions@18#. The interplay between leve
repulsion caused byvR and cluster formation caused byv l
is studied in laser-induced continuum structures in the a

FIG. 2. One possible way of encircling the BPCP lying atF
50. For realv, F.0 is the overcritical region with an avoide
level crossing in energy ata5acr while F,0 is the subcritical
region with free crossing in energy. The BPCP is denoted byX. F
anda are in arbitrary units.
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I. ROTTER PHYSICAL REVIEW E 65 026217
batic limit.@11,13# In this case,v is given by the Rabi fre-
quency. The cluster formation is accompanied by resona
trapping that may lead, under certain conditions, to a
crease of the ionization rate with increasing intensity of
laser beam~adiabatic stabilization or resonance trapping!.

The two examples~i! and ~ii ! illustrate further that at the
critical valueacr the states are always exchanged when
coupling is overcritical. In the case of subcritical couplin
no exchange occurs. The exchange is related, in any cas
a BPCP that appears as a double pole of theS matrix when
the condition of the critical coupling is fulfilled@10,12#. The
two wave functions can be normalized according to Eq.~1!
in the whole function space including the BPCP althou
they are linearly dependent at the BPCP according to Eq.~3!.

The point is that (F̃ i)
2 is, at acr, the differenceof two infi-

nitely large numbers that may be 0 or 1. All physically re
evant values contain the wave functions in a combinat
according to the orthonormality condition~1!. They donot

contain any singularities caused by theuF̃ i u2 at the BPCP,
i.e., by the relations~2! at acr ~which are sums of two infi-
nitely large numbers!.

The DP is related to the avoided crossing of discrete l
els belonging to the case~i! with the condition~10!. The
corresponding BPCP is beyond the function space con
ered. It is a hidden crossing. The DP is surrounded in
experiment@3#, therefore, in the regime of overcritical cou
pling along the whole way of encircling and the BPCP its
is not encircled in this experiment.

III. ENCIRCLING OF ISOLATED DP AND BPCP

We will illustrate the surrounding of an isolated DP b
means of adiabatically varying the parametera in the Hamil-
tonian ~4! and using the relation~3! at acr and Table I. The
encircling is illustrated in Fig. 1 wherev'vR , case~i!, is
assumed. It causes the following changes: for the way fro
to 2 with passingacr at overcritical coupling,

H F̃1

F̃2
J →H 2 i F̃2

i F̃1
J , ~14!

and for the way back from 2 to 1 with passingacr at over-
critical coupling,

H 2 i F̃2

i F̃1
J →2H F̃1

F̃2
J . ~15!

The encircling of the DP gives a phase change byp of both
wave functions that is caused by the hidden BPCP. En

cling it once more will restore the original wave functionsF̃ i
including their phases. Thus, the BPCP is a second-o
branch point that is in agreement with the eigenvalue eq
tion ~5!. The phase change occuring after the first surrou
ing of the DP, Eq.~15!, corresponds to the well-known geo
metric phase discussed by Berry@1,3#.

The way of encircling adiabatically the BPCP itself pass
from a region with overcritical coupling atacr to another one
02621
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with subcritical coupling atacr. For illustration see Fig. 2
where v'vR , case~i!, is assumed as in Fig. 1. The firs
surrounding causes the following changes: for the way fr
1 to 2 with passingacr at overcritical coupling,

H F̃1

F̃2
J →H 2 i F̃2

i F̃1
J ; ~16!

for the way from 2 to 3 with transition from the overcritica
to the subcritical coupling, no exchange occurs sinceacr will
not be passed; for the way from 3 to 4 with passingacr at
subcritical coupling, no exchange occurs atacr; for the way
from 4 back to 1 with transition from the subcritical to th
overcritical coupling, no exchange occurs sinceacr will not
be passed. Thus, the wave functions are exchanged
phase changes ofp/2 and 3p/2, respectively.

The second surrounding is as follows: for the way from
to 2 with passingacr at overcritical coupling

H 2 i F̃2

i F̃1
J →1H F̃1

F̃2
J , ~17!

and for the way from 2 to 3 with transition from the ove
critical to the subcritical coupling, no exchange occurs sin
acr will not be passed; for the way from 3 to 4 with passin
acr at subcritical coupling no exchange occurs atacr, and for
the way from 4 back to 1 with transition from the subcritic
to the overcritical coupling no exchange occurs sinceacr will
not be passed. As a result, surrounding the BPCP adia

cally twice restores the wave functionsF̃ i including their
phases, see Eq.~17!. The BPCP is a second-order bran
point in correspondence with the eigenvalue equation~5!.

In the experiment@16#, the BPCP is encircled once and
phase change of one of the wave functions has been
served. This result coincides with Eq.~16!. Surrounding the
BPCP in the opposite direction~i.e., from 2 to 1! changes the
phase of the other wave function according to the experim
@16#. Such a result follows also theoretically. As in the ca
discussed above, the only changes between the wave f
tions take place by passing the critical valueacr at overcriti-
cal coupling. This gives for the encircling of the BPCP in t
opposite direction

H F̃1

F̃2
J →H i F̃2

2 i F̃1
J . ~18!

Thus, the theoretical results~16! and ~18! agree with the
experimental results presented in@16#.

The relations~15! and ~16! show that the phase change
of the wave functions are different in encircling a DP and t
corresponding BPCP in the parameter space only once
both cases, a second surrounding restores the original w
functions including their phases~which holds exactly of
course only when the lifetimes of both states are long
7-4
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BRANCH POINTS IN THE COMPLEX PLANE AND . . . PHYSICAL REVIEW E65 026217
compared to the time of encircling, i.e., in the adiaba
limit !. This result is in correspondence to the fact that
BPCP is a second-order branch point.

Experimental studies with surrounding a DP and a BP
have been performed, up to now, only on microwave reso
tors @3,16#. The results obtained are in agreement with
theoretical expectations discussed above~see @17#!. The
LIDS provide another example for the appearance of g
metric phases when surrounded adiabatically in the par
eter space. The different phase changes of the two w
functions after surrounding the LIDS in opposite directio
are expected to influence the interference picture of mea
able values. In any case, it will be restored to the original o
after a second surrounding only.

It should be underlined here that all the results discus
above are obtained under the assumption that the syste
adequately described by a two-state approximation, wh
includes that the considered BPCP is well separated f
other BPCP in the neighborhood. This is surely true when
BPCP lies near to the real axis and the level density is l
As soon as two~or more! BPCP start to overlap in the com
plex plane, i.e., when the corresponding widths exceed
distance in energy between different BPCP, the change
the wave functions under the influence of the BPCP
much more complicated, see@4,5#. Especially, the nonlinea
effects arising from the BPCP are difficult to handle@10,12#.
The other assumption stressed above is the adiabaticity
involves further that the lifetimes of both states are long
compared to the time of encircling the BPCP.
A

e
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t.
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IV. SUMMARY

Summarizing, it can be stated the following.
~1! Well-isolated BPCP are second-order branch poin

They can be studied by means of LIDS.
~2! The geometric phases appearing by surrounding a

adiabatically in the parameter space are caused by a B
that is a hidden crossing when the consideration is restric
to the function space of discrete states.

~3! Encircling a DP adiabatically in the parameter spa
only once, the phases of both wave functions are change
p, as discussed by Berry@1#.

~4! Encircling a BPCP adiabatically in the paramet
space only once, the two wave functions are exchanged
the phase changesp/2 and 3p/2, respectively.

The results discussed in this paper show that the Be
phase is the sign of a BPCP that is hidden when the func
space considered is restricted to the wave functions of
crete states. The BPCP are in the continuum, but their in
ence continues analytically into the function space of d
crete states. Encircling adiabatically a LIDS in the parame
space will provide measurable values that differ, due to
terference effects, from the original ones. Only a second
rounding will restore the original values~under the assump
tion that the states did not yet decay during the time
surrounding!. An experimental study of this phenomeno
would represent an interesting proof of the topological str
ture of the Hilbert space, including the mapping from t
parameter space to the Hilbert space and the geom
phases.
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